Chapter 4 Disease analysis

DOSE(Yu et al. 2015) supports Disease Ontology (DO) Semantic and Enrichment analysis. The enrichDO function is very useful for identifying disease association of interesting genes, and function gseDO function is designed for gene set enrichment analysis of DO.

In addition, DOSE also supports enrichment analysis of Network of Cancer Gene (NCG)(A. et al. 2016) and Disease Gene Network(Janet et al. 2015), please refer to the DOSE vignettes.

4.1 enrichDO function

In the following example, we selected fold change above 1.5 as the differential genes and analyzing their disease association.

library(DOSE)
data(geneList)
gene <- names(geneList)[abs(geneList) > 1.5]
head(gene)
## [1] "4312"  "8318"  "10874" "55143" "55388" "991"
x <- enrichDO(gene          = gene,
              ont           = "DO",
              pvalueCutoff  = 0.05,
              pAdjustMethod = "BH",
              universe      = names(geneList),
              minGSSize     = 5,
              maxGSSize     = 500,
              qvalueCutoff  = 0.05,
              readable      = FALSE)
head(x)
##                    ID                    Description
## DOID:170     DOID:170         endocrine gland cancer
## DOID:10283 DOID:10283                prostate cancer
## DOID:3459   DOID:3459               breast carcinoma
## DOID:3856   DOID:3856 male reproductive organ cancer
## DOID:824     DOID:824                  periodontitis
## DOID:3905   DOID:3905                 lung carcinoma
##            GeneRatio  BgRatio       pvalue    p.adjust
## DOID:170      48/331 472/6268 5.662129e-06 0.004784499
## DOID:10283    40/331 394/6268 3.859157e-05 0.013921739
## DOID:3459     37/331 357/6268 4.942629e-05 0.013921739
## DOID:3856     40/331 404/6268 6.821467e-05 0.014410349
## DOID:824      16/331 109/6268 1.699304e-04 0.018859464
## DOID:3905     43/331 465/6268 1.749754e-04 0.018859464
##                 qvalue
## DOID:170   0.003826407
## DOID:10283 0.011133923
## DOID:3459  0.011133923
## DOID:3856  0.011524689
## DOID:824   0.015082872
## DOID:3905  0.015082872
##                                                                                                                                                                                                                                                   geneID
## DOID:170   10874/7153/1381/6241/11065/10232/332/6286/2146/10112/891/9232/4171/993/5347/4318/3576/1515/4821/8836/3159/7980/5888/333/898/9768/4288/3551/2152/9590/185/7043/3357/2952/5327/3667/1634/1287/4582/7122/3479/4680/6424/80310/652/8839/9547/1524
## DOID:10283                                          4312/6280/6279/597/3627/332/6286/2146/4321/4521/891/5347/4102/4318/701/3576/79852/10321/6352/4288/3551/2152/247/2952/3487/367/3667/4128/4582/563/3679/4117/7031/3479/6424/10451/80310/652/4036/10551
## DOID:3459                                                          4312/6280/6279/7153/4751/890/4085/332/6286/6790/891/9232/10855/4171/5347/4318/701/2633/3576/9636/898/8792/4288/2952/4982/4128/4582/7031/3479/771/4250/2066/3169/10647/5304/5241/10551
## DOID:3856                                           4312/6280/6279/597/3627/332/6286/2146/4321/4521/891/5347/4102/4318/701/3576/79852/10321/6352/4288/3551/2152/247/2952/3487/367/3667/4128/4582/563/3679/4117/7031/3479/6424/10451/80310/652/4036/10551
## DOID:824                                                                                                                                                                   4312/6279/820/7850/4321/3595/4318/4069/3576/1493/6352/8842/185/2952/5327/4982
## DOID:3905                          4312/6280/2305/9133/6279/7153/6278/6241/55165/11065/8140/10232/332/6286/3002/9212/4521/891/4171/9928/8061/4318/3576/1978/1894/7980/7083/898/6352/8842/4288/2152/2697/2952/3572/4582/7049/563/3479/1846/3117/2532/2922
##            Count
## DOID:170      48
## DOID:10283    40
## DOID:3459     37
## DOID:3856     40
## DOID:824      16
## DOID:3905     43

The enrichDO function requires an entrezgene ID vector as input, mostly is the differential gene list of gene expression profile studies. If user needs to convert other gene ID type to entrezgene ID, we recommend using bitr function provided by clusterProfiler.

The ont parameter can be “DO” or “DOLite”, DOLite(Du et al. 2009) was constructed to aggregate the redundant DO terms. The DOLite data is not updated, we recommend user use ont="DO". pvalueCutoff setting the cutoff value of p value and p value adjust; pAdjustMethod setting the p value correction methods, include the Bonferroni correction (“bonferroni”), Holm (“holm”), Hochberg (“hochberg”), Hommel (“hommel”), Benjamini & Hochberg (“BH”) and Benjamini & Yekutieli (“BY”) while qvalueCutoff is used to control q-values.

The universe setting the background gene universe for testing. If user do not explicitly setting this parameter, enrichDO will set the universe to all human genes that have DO annotation.

The minGSSize (and maxGSSize) indicates that only those DO terms that have more than minGSSize (and less than maxGSSize) genes annotated will be tested.

The readable is a logical parameter, indicates whether the entrezgene IDs will mapping to gene symbols or not.

We also implement setReadable function that helps the user to convert entrezgene IDs to gene symbols.

x <- setReadable(x, 'org.Hs.eg.db')
head(x)
##                    ID                    Description
## DOID:170     DOID:170         endocrine gland cancer
## DOID:10283 DOID:10283                prostate cancer
## DOID:3459   DOID:3459               breast carcinoma
## DOID:3856   DOID:3856 male reproductive organ cancer
## DOID:824     DOID:824                  periodontitis
## DOID:3905   DOID:3905                 lung carcinoma
##            GeneRatio  BgRatio       pvalue    p.adjust
## DOID:170      48/331 472/6268 5.662129e-06 0.004784499
## DOID:10283    40/331 394/6268 3.859157e-05 0.013921739
## DOID:3459     37/331 357/6268 4.942629e-05 0.013921739
## DOID:3856     40/331 404/6268 6.821467e-05 0.014410349
## DOID:824      16/331 109/6268 1.699304e-04 0.018859464
## DOID:3905     43/331 465/6268 1.749754e-04 0.018859464
##                 qvalue
## DOID:170   0.003826407
## DOID:10283 0.011133923
## DOID:3459  0.011133923
## DOID:3856  0.011524689
## DOID:824   0.015082872
## DOID:3905  0.015082872
##                                                                                                                                                                                                                                                                                         geneID
## DOID:170   NMU/TOP2A/CRABP1/RRM2/UBE2C/MSLN/BIRC5/S100P/EZH2/KIF20A/CCNB1/PTTG1/MCM2/CDC25A/PLK1/MMP9/CXCL8/CTSV/NKX2-2/GGH/HMGA1/TFPI2/RAD51/APLP1/CCNE1/PCLAF/MKI67/IKBKB/F3/AKAP12/AGTR1/TGFB3/HTR2B/GSTT1/PLAT/IRS1/DCN/COL4A5/MUC1/CLDN5/IGF1/CEACAM6/SFRP4/PDGFD/BMP4/CCN5/CXCL14/CX3CR1
## DOID:10283                                                  MMP1/S100A9/S100A8/BCL2A1/CXCL10/BIRC5/S100P/EZH2/MMP12/NUDT1/CCNB1/PLK1/MAGEA3/MMP9/BUB1B/CXCL8/EPHX3/CRISP3/CCL5/MKI67/IKBKB/F3/ALOX15B/GSTT1/IGFBP4/AR/IRS1/MAOA/MUC1/AZGP1/ITGA7/MAK/TFF1/IGF1/SFRP4/VAV3/PDGFD/BMP4/LRP2/AGR2
## DOID:3459                                                          MMP1/S100A9/S100A8/TOP2A/NEK2/CCNA2/MAD2L1/BIRC5/S100P/AURKA/CCNB1/PTTG1/HPSE/MCM2/PLK1/MMP9/BUB1B/GBP1/CXCL8/ISG15/CCNE1/TNFRSF11A/MKI67/GSTT1/TNFRSF11B/MAOA/MUC1/TFF1/IGF1/CA12/SCGB2A2/ERBB4/FOXA1/SCGB1D2/PIP/PGR/AGR2
## DOID:3856                                                   MMP1/S100A9/S100A8/BCL2A1/CXCL10/BIRC5/S100P/EZH2/MMP12/NUDT1/CCNB1/PLK1/MAGEA3/MMP9/BUB1B/CXCL8/EPHX3/CRISP3/CCL5/MKI67/IKBKB/F3/ALOX15B/GSTT1/IGFBP4/AR/IRS1/MAOA/MUC1/AZGP1/ITGA7/MAK/TFF1/IGF1/SFRP4/VAV3/PDGFD/BMP4/LRP2/AGR2
## DOID:824                                                                                                                                                                                       MMP1/S100A8/CAMP/IL1R2/MMP12/IL12RB2/MMP9/LYZ/CXCL8/CTLA4/CCL5/PROM1/AGTR1/GSTT1/PLAT/TNFRSF11B
## DOID:3905                           MMP1/S100A9/FOXM1/CCNB2/S100A8/TOP2A/S100A7/RRM2/CEP55/UBE2C/SLC7A5/MSLN/BIRC5/S100P/GZMB/AURKB/NUDT1/CCNB1/MCM2/KIF14/FOSL1/MMP9/CXCL8/EIF4EBP1/ECT2/TFPI2/TK1/CCNE1/CCL5/PROM1/MKI67/F3/GJA1/GSTT1/IL6ST/MUC1/TGFBR3/AZGP1/IGF1/DUSP4/HLA-DQA1/ACKR1/GRP
##            Count
## DOID:170      48
## DOID:10283    40
## DOID:3459     37
## DOID:3856     40
## DOID:824      16
## DOID:3905     43

4.2 enrichNCG function

Network of Cancer Gene (NCG)(A. et al. 2016) is a manually curated repository of cancer genes. NCG release 5.0 (Aug. 2015) collects 1,571 cancer genes from 175 published studies. DOSE supports analyzing gene list and determine whether they are enriched in genes known to be mutated in a given cancer type.

gene2 <- names(geneList)[abs(geneList) < 3]
ncg <- enrichNCG(gene2)
head(ncg)
##                                        ID
## soft_tissue_sarcomas soft_tissue_sarcomas
## bladder                           bladder
## glioma                             glioma
##                               Description GeneRatio BgRatio
## soft_tissue_sarcomas soft_tissue_sarcomas   28/1172 28/1571
## bladder                           bladder   61/1172 67/1571
## glioma                             glioma   68/1172 76/1571
##                            pvalue    p.adjust      qvalue
## soft_tissue_sarcomas 0.0002517511 0.008056037 0.006360029
## bladder              0.0005108168 0.008173069 0.006452423
## glioma               0.0008511747 0.009079196 0.007167787
##                                                                                                                                                                                                                                                                                                                                                                  geneID
## soft_tissue_sarcomas                                                                                                                                                                                                       1029/999/6850/4914/4342/2185/55294/2041/4851/23512/2044/4058/5290/8726/4486/5297/5728/3815/2324/7403/5925/4763/1499/7157/5159/2045/3667/2066
## bladder                                            9700/2175/9603/1029/8997/688/1026/896/677/6256/55294/8085/4851/3265/1999/3845/8243/10605/8295/4854/5290/2033/4780/23224/23217/2064/23385/55252/10735/4853/387/288/30849/9794/7403/287/463/472/4297/2065/2262/8289/9611/5925/2068/4763/7157/2186/1387/3910/2261/7248/23037/23345/7832/79633/10628/22906/388/4036/3169
## glioma               4603/4609/1029/3418/8877/1019/7027/4613/1030/1956/1106/2264/3417/6597/4914/55359/896/894/2321/3954/5335/5781/8439/673/9444/4851/8087/2050/8493/3845/3482/667/56999/5290/2033/4233/577/5894/5156/80036/9407/3020/1021/5598/5728/8621/1828/63035/23592/8880/2260/54880/4916/2263/1639/90/546/8289/4763/7157/23152/5295/4602/595/2261/6938/4915/26137
##                      Count
## soft_tissue_sarcomas    28
## bladder                 61
## glioma                  68

4.3 enrichDGN and enrichDGNv functions

DisGeNET(Janet et al. 2015) is an integrative and comprehensive resources of gene-disease associations from several public data sources and the literature. It contains gene-disease associations and snp-gene-disease associations.

The enrichment analysis of disease-gene associations is supported by the enrichDGN function and analysis of snp-gene-disease associations is supported by the enrichDGNv function.

dgn <- enrichDGN(gene)
head(dgn)
##                          ID
## umls:C1134719 umls:C1134719
## umls:C0032460 umls:C0032460
## umls:C0206698 umls:C0206698
## umls:C0007138 umls:C0007138
## umls:C0031099 umls:C0031099
## umls:C0005695 umls:C0005695
##                                    Description GeneRatio
## umls:C1134719 Invasive Ductal Breast Carcinoma    28/476
## umls:C0032460        Polycystic Ovary Syndrome    38/476
## umls:C0206698               Cholangiocarcinoma    36/476
## umls:C0007138     Carcinoma, Transitional Cell    35/476
## umls:C0031099                    Periodontitis    28/476
## umls:C0005695                 Bladder Neoplasm    36/476
##                 BgRatio       pvalue     p.adjust
## umls:C1134719 231/17381 4.312190e-11 1.225524e-07
## umls:C0032460 434/17381 2.819624e-10 3.521620e-07
## umls:C0206698 399/17381 3.717403e-10 3.521620e-07
## umls:C0007138 389/17381 7.093837e-10 5.040171e-07
## umls:C0031099 270/17381 1.634417e-09 9.290027e-07
## umls:C0005695 442/17381 5.871618e-09 2.781190e-06
##                     qvalue
## umls:C1134719 9.164539e-08
## umls:C0032460 2.633487e-07
## umls:C0206698 2.633487e-07
## umls:C0007138 3.769068e-07
## umls:C0031099 6.947133e-07
## umls:C0005695 2.079789e-06
##                                                                                                                                                                                                         geneID
## umls:C1134719                                                 9133/7153/6241/55165/11065/51203/22974/4751/5080/332/2568/3902/6790/891/24137/9232/10855/79801/4318/55635/5888/1493/9768/3070/4288/367/4582/5241
## umls:C0032460 4312/6280/6279/7153/259266/6241/55165/55872/4085/6286/7272/366/891/4171/7941/1164/3161/4603/990/29127/4318/53335/3294/3070/2952/5327/367/3667/4582/563/27324/3479/114899/9370/2167/652/5346/5241
## umls:C0206698             4312/2305/55872/4751/8140/10635/10232/5918/332/6286/2146/4521/891/10855/2921/7941/1164/4318/3576/1978/79852/8842/4485/214/65982/6863/1036/6935/4128/3572/4582/7031/7166/4680/80310/9
## umls:C0007138                       4312/991/6280/6241/55165/10460/6373/8140/890/10232/4085/332/6286/2146/4171/1033/6364/5347/4318/3576/8836/9700/898/4288/2952/367/8382/2947/3479/9338/23158/2167/2066/2625/9
## umls:C0031099                                                       4312/6279/3669/820/7850/332/4321/6364/3595/4318/3576/3898/8792/1493/4485/10472/185/6863/2205/2952/5327/4982/23261/2200/3572/2006/1308/2625
## umls:C0005695                   4312/10874/6280/3868/6279/597/7153/6241/9582/10460/4085/5080/332/2146/6790/10855/4171/5347/4318/3576/8836/9636/9700/898/4288/214/2952/367/2947/4582/3479/6424/9338/2066/1580/9
##               Count
## umls:C1134719    28
## umls:C0032460    38
## umls:C0206698    36
## umls:C0007138    35
## umls:C0031099    28
## umls:C0005695    36
snp <- c("rs1401296", "rs9315050", "rs5498", "rs1524668", "rs147377392",
         "rs841", "rs909253", "rs7193343", "rs3918232", "rs3760396",
         "rs2231137", "rs10947803", "rs17222919", "rs386602276", "rs11053646",
         "rs1805192", "rs139564723", "rs2230806", "rs20417", "rs966221")
dgnv <- enrichDGNv(snp)
head(dgnv)
##                          ID
## umls:C3272363 umls:C3272363
## umls:C0948008 umls:C0948008
## umls:C0038454 umls:C0038454
## umls:C0027051 umls:C0027051
## umls:C0010054 umls:C0010054
## umls:C0010068 umls:C0010068
##                                     Description GeneRatio
## umls:C3272363 Ischemic Cerebrovascular Accident     20/20
## umls:C0948008                   Ischemic stroke     20/20
## umls:C0038454          Cerebrovascular accident      7/20
## umls:C0027051             Myocardial Infarction      6/20
## umls:C0010054         Coronary Arteriosclerosis      6/20
## umls:C0010068            Coronary heart disease      6/20
##                 BgRatio       pvalue     p.adjust
## umls:C3272363 141/46589 1.014503e-51 1.379725e-49
## umls:C0948008 148/46589 2.867870e-51 1.950151e-49
## umls:C0038454 243/46589 7.045680e-12 3.194042e-10
## umls:C0027051 163/46589 6.222154e-11 1.889883e-09
## umls:C0010054 166/46589 6.948100e-11 1.889883e-09
## umls:C0010068 314/46589 3.198889e-09 7.250815e-08
##                     qvalue
## umls:C3272363 1.922217e-50
## umls:C0948008 2.716929e-50
## umls:C0038454 4.449903e-11
## umls:C0027051 2.632964e-10
## umls:C0010054 2.632964e-10
## umls:C0010068 1.010175e-08
##                                                                                                                                                                                                              geneID
## umls:C3272363 rs1401296/rs9315050/rs5498/rs1524668/rs147377392/rs841/rs909253/rs7193343/rs3918232/rs3760396/rs2231137/rs10947803/rs17222919/rs386602276/rs11053646/rs1805192/rs139564723/rs2230806/rs20417/rs966221
## umls:C0948008 rs1401296/rs9315050/rs5498/rs1524668/rs147377392/rs841/rs909253/rs7193343/rs3918232/rs3760396/rs2231137/rs10947803/rs17222919/rs386602276/rs11053646/rs1805192/rs139564723/rs2230806/rs20417/rs966221
## umls:C0038454                                                                                                                              rs1524668/rs147377392/rs2231137/rs10947803/rs386602276/rs2230806/rs20417
## umls:C0027051                                                                                                                                              rs5498/rs147377392/rs909253/rs11053646/rs1805192/rs20417
## umls:C0010054                                                                                                                                             rs5498/rs147377392/rs11053646/rs1805192/rs2230806/rs20417
## umls:C0010068                                                                                                                                             rs5498/rs147377392/rs11053646/rs1805192/rs2230806/rs20417
##               Count
## umls:C3272363    20
## umls:C0948008    20
## umls:C0038454     7
## umls:C0027051     6
## umls:C0010054     6
## umls:C0010068     6

4.4 gseDO fuction

In the following example, in order to speedup the compilation of this document, only gene sets with size above 120 were tested and only 100 permutations were performed.

library(DOSE)
data(geneList)
y <- gseDO(geneList,
           nPerm         = 100,
           minGSSize     = 120,
           pvalueCutoff  = 0.2,
           pAdjustMethod = "BH",
           verbose       = FALSE)
head(y, 3)
##                  ID            Description setSize
## DOID:114   DOID:114          heart disease     462
## DOID:1492 DOID:1492 eye and adnexa disease     459
## DOID:5614 DOID:5614            eye disease     450
##           enrichmentScore       NES     pvalue  p.adjust
## DOID:114       -0.2978223 -1.347617 0.01234568 0.1121429
## DOID:1492      -0.3105160 -1.403120 0.01234568 0.1121429
## DOID:5614      -0.3125247 -1.401403 0.01265823 0.1121429
##              qvalues rank                   leading_edge
## DOID:114  0.06992481 1904 tags=22%, list=15%, signal=19%
## DOID:1492 0.06992481 1793 tags=22%, list=14%, signal=19%
## DOID:5614 0.06992481 1768 tags=22%, list=14%, signal=19%
##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      core_enrichment
## DOID:114  4057/6649/10268/3567/4882/3910/3371/6548/3082/4153/29119/3791/182/3554/5813/1129/5624/3240/8743/7450/947/78987/1843/4179/7168/948/4314/10272/4881/2628/5021/4018/4256/187/6403/4322/2308/3752/1907/1511/283/3953/7078/2247/2281/10398/5468/10411/10203/1281/4023/83700/11167/7056/3952/126/6310/4313/5502/2944/6444/3075/2273/2099/3480/1471/7079/775/1909/2690/1363/4306/23414/5167/213/5350/5744/11188/2152/2697/185/2952/367/4982/7349/2200/4056/3572/2053/7122/1489/3479/2006/10266/9370/10699/4629/2167/652/1524/7021
## DOID:1492            8106/3371/3082/5914/2878/4153/3791/23247/1543/80184/6750/1958/2098/7450/596/9187/2034/482/948/1490/1280/3931/5737/4314/4881/2261/3426/187/629/6403/7042/6785/7507/2934/5176/4060/1277/7078/5950/2057/727/10516/4311/2247/1295/358/10203/2192/582/10218/57125/3485/585/1675/6310/2202/4313/2944/4254/3075/1501/2099/3480/4653/1195/6387/3305/1471/857/4016/1909/4053/6678/1296/7033/4915/55812/1191/5654/10631/2152/2697/7043/2952/6935/2200/3572/7177/7031/3479/2006/10451/9370/771/3117/125/652/4693/5346/1524
## DOID:5614                      3371/3082/5914/2878/4153/3791/23247/1543/80184/6750/1958/2098/7450/596/9187/2034/482/948/1490/1280/3931/5737/4314/4881/2261/3426/187/629/6403/7042/6785/7507/2934/5176/4060/1277/7078/5950/2057/727/10516/4311/2247/1295/358/10203/2192/582/10218/57125/3485/585/1675/6310/2202/4313/2944/4254/3075/1501/2099/3480/4653/6387/3305/1471/857/4016/1909/4053/6678/1296/7033/4915/55812/1191/5654/10631/2152/2697/7043/2952/6935/2200/3572/7177/7031/3479/2006/10451/9370/771/3117/125/652/4693/5346/1524

4.5 gseNCG fuction

ncg <- gseNCG(geneList,
              nPerm         = 100,
              minGSSize     = 120,
              pvalueCutoff  = 0.2,
              pAdjustMethod = "BH",
              verbose       = FALSE)
ncg <- setReadable(ncg, 'org.Hs.eg.db')
head(ncg, 3)
##                ID Description setSize enrichmentScore
## breast     breast      breast     133      -0.4869070
## lung         lung        lung     173      -0.3880662
## lymphoma lymphoma    lymphoma     188       0.2999589
##                NES     pvalue   p.adjust    qvalues rank
## breast   -1.904542 0.01492537 0.06666667 0.03508772 2930
## lung     -1.592997 0.02816901 0.06666667 0.03508772 2775
## lymphoma  1.346949 0.03333333 0.06666667 0.03508772 2087
##                            leading_edge
## breast   tags=33%, list=23%, signal=26%
## lung     tags=31%, list=22%, signal=25%
## lymphoma tags=21%, list=17%, signal=18%
##                                                                                                                                                                                                                 core_enrichment
## breast                                                                                     PTPRD/KMT2A/ERBB3/SETD2/ARID1A/GPS2/NCOR1/RB1/MAP2K4/NF1/TP53/PIK3R1/STK11/CDKN1B/PTGFR/APC/CCND1/TRAF5/MAP3K1/ESR1/TBX3/FOXA1/GATA3
## lung     PIK3C2B/SETD2/ATXN3L/LRP1B/BRD3/ARID1A/INHBA/RB1/ADCY1/LYRM9/NF1/CTNNB1/TP53/SATB2/STK11/CTIF/CTNNA3/KDR/COL11A1/FLT3/APC/ADGRL3/FGFR3/NCAM2/DIP2C/APLNR/SLIT2/EPHA3/RUNX1T1/ZMYND10/ZFHX4/GLI3/TNN/PLSCR4/DACH1/ERBB4
## lymphoma                                                                DUSP2/EZH2/PRDM1/MYC/ZWILCH/IKZF3/PLCG2/IDH2/H1-2/MAGEC3/CD79B/ETV6/H1-4/H1-5/IRF8/CD28/SLC29A2/DUSP9/TNFAIP3/DNMT3A/SYK/TNF/BCR/H1-3/DSC3/UBE2A/PABPC1

4.6 gseDGN fuction

dgn <- gseDGN(geneList,
              nPerm         = 100,
              minGSSize     = 120,
              pvalueCutoff  = 0.2,
              pAdjustMethod = "BH",
              verbose       = FALSE)
dgn <- setReadable(dgn, 'org.Hs.eg.db')
head(dgn, 3)
##                          ID       Description setSize
## umls:C0029456 umls:C0029456      Osteoporosis     375
## umls:C0011570 umls:C0011570 Mental Depression     483
## umls:C0042133 umls:C0042133  Uterine Fibroids     289
##               enrichmentScore       NES     pvalue
## umls:C0029456      -0.3439046 -1.519917 0.01190476
## umls:C0011570      -0.2874181 -1.281686 0.01265823
## umls:C0042133      -0.3210059 -1.374001 0.01265823
##                p.adjust    qvalues rank
## umls:C0029456 0.1123876 0.06861559 1766
## umls:C0011570 0.1123876 0.06861559 2587
## umls:C0042133 0.1123876 0.06861559 2105
##                                 leading_edge
## umls:C0029456 tags=23%, list=14%, signal=20%
## umls:C0011570 tags=25%, list=21%, signal=20%
## umls:C0042133 tags=25%, list=17%, signal=21%
##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  core_enrichment
## umls:C0029456                                                                                                                                                                                            RXRG/HGF/PTH1R/CYP1A1/JAG1/ROR2/FLT3/CUL9/EEF1A2/THSD4/BCL2/ITGAV/WIF1/GREM2/COL15A1/HPGDS/VGLL3/SLIT3/NRIP1/TMEM135/MGP/PLCL1/OSBPL1A/PIBF1/SELP/SPRY1/MMP13/ID4/SPP2/COL1A2/AOX1/ARHGEF3/GSN/TSC22D3/ATP1B1/NR5A2/ANKH/COL1A1/LEPR/THSD7A/GC/FGF2/PPARG/NOX4/ZNF266/GHRH/BHLHE40/SLC19A2/THBD/FLNB/KL/LEP/HSD17B4/CTSK/FTO/MMP2/ESR1/IGF1R/PTN/IRAK3/HSPA1L/CST3/GHR/SPARC/KDM4B/LRP1/INPP4B/BMPR1B/PTHLH/DPT/FRZB/GSTT1/AR/TNFRSF11B/IRS1/WLS/GSTM3/TGFBR3/TPH1/IGF1/SFRP4/CORIN/BMP4/CHAD/FOXA1/PGR
## umls:C0011570 SMPD1/ETS2/RGN/GRIA1/PTGS1/NLGN1/PDE4A/ADAMTS2/EHD3/NR5A1/SORCS3/A2M/KCNQ1/CRY1/ADRB2/FZD1/MYOM2/ADCY1/POU6F1/MAPK3/BICC1/SLC6A4/AHI1/TP53/DBP/SLC12A2/BDNF/NR3C1/SRSF5/PCLO/GABRA6/WWC1/IL5/GLUL/ELK3/GAD1/RARA/GRM5/ASAH1/IMPACT/CHRM2/WFS1/TSPAN31/ARGLU1/HP/PVALB/HTR1A/GPM6A/CYP2A6/DUSP1/NLGN4Y/F2R/CD36/DBH/BECN1/CCND1/PER3/OXTR/SGCE/CFB/CLASP2/LPAR1/NRP1/AVPR1B/ARSD/GC/FAAH/BHLHE41/FGF2/CD1C/ABCB1/PPARG/SRPX/RAPGEF3/CRHBP/CDH13/HSPA2/BHLHE40/PDE1A/LEP/FTO/PER2/ALPK1/GSTM1/DIXDC1/XBP1/TCF4/ESR1/IGF1R/NTF3/CACNA1C/NR3C2/SLC18A2/NTRK2/RAPGEF4/F3/AGTR1/TAC1/GSTT1/AR/UCN/FBN1/MAOA/CARTPT/TAT/ADRA2A/MUC1/TGFBR3/TPH1/IGF1/MAOB/ADIPOQ/TBC1D9/ADH1B/EMX2/MAPT/CRY2/GATA3/TFAP2B
## umls:C0042133                                                                                                                                                                                                                                                                                  PBX1/CTNNB1/TP53/FZD2/CYP2A13/SMAD3/ADAM12/COL4A6/HSD17B7/KAT6B/CYP1A1/BCL6/SST/EGR1/SALL1/NAALADL1/IGFBP7/BCL2/CD34/CCN2/HPGDS/MMP3/AHR/CCND1/HOXA5/OXTR/FERMT2/NR4A2/LAMB1/ADGRV1/FOXO1/FNDC3A/FOS/MME/FGF2/PPARG/TAGLN/CCNG1/ALDH1A1/IGFBP2/WNT5B/LEP/MMP2/GSTM1/GAS6/ESR1/IGF1R/CAV1/VCAN/EDNRA/GHR/LTBP2/SLC7A8/PTHLH/NTS/DPT/MST1/ZKSCAN7/F3/GJA1/ANO1/TGFB3/AR/FBN1/COL4A5/XIST/IGF1/MYH11/CCN5/CXCL14/PGR

References

A., Omer, Giovanni M. D., Thanos P. M., and Francesca D. C. 2016. “NCG 5.0: Updates of a Manually Curated Repository of Cancer Genes and Associated Properties from Cancer Mutational Screenings.” Nucleic Acids Research 44 (D1): D992–D999. https://doi.org/10.1093/nar/gkv1123.

Du, Pan, Gang Feng, Jared Flatow, Jie Song, Michelle Holko, Warren A. Kibbe, and Simon M. Lin. 2009. “From Disease Ontology to Disease-Ontology Lite: Statistical Methods to Adapt a General-Purpose Ontology for the Test of Gene-Ontology Associations.” Bioinformatics 25 (12): i63–i68. https://doi.org/10.1093/bioinformatics/btp193.

Janet, P., Núria Q. R., Àlex B., Jordi D. P., Anna B. M., Martin B., Ferran S., and Laura I. F. 2015. “DisGeNET: A Discovery Platform for the Dynamical Exploration of Human Diseases and Their Genes.” Database 2015 (March): bav028. https://doi.org/10.1093/database/bav028.

Yu, Guangchuang, Li-Gen Wang, Guang-Rong Yan, and Qing-Yu He. 2015. “DOSE: An R/Bioconductor Package for Disease Ontology Semantic and Enrichment Analysis.” Bioinformatics 31 (4): 608–9. https://doi.org/10.1093/bioinformatics/btu684.