Chapter 2 🖎🏻 Batch Effect Correction
2.1 Batch Correction Method
Name | Algorithm | Data type |
---|---|---|
Combat | empirical Bayes frameworks | cleaned and normalized data |
Combat_seq | negative binomial regression | count data |
limma | linear model | log transfered data |
DWD | distance weighted discrimination | all kinds of data |
library(tigeR)
library(tigeR.data)
library(SummarizedExperiment)
<- cbind(MEL_GSE145996,MEL_GSE78220)
SE <- remove_BE(SE,method = "Combat")
SE_Combat <- remove_BE(SE,method = "Combat_seq")
SE_Combat_seq <- remove_BE(SE,method = "limma")
SE_limma <- remove_BE(SE,method = "DWD")
SE_DWD
<- browse_BE(SE) + ggtitle("Origin")
SE_batch <- browse_BE(SE_Combat) + ggtitle("Combat")
Combat_batch <- browse_BE(SE_Combat_seq) + ggtitle("Combat_seq")
CombatSQ_batch <- browse_BE(SE_limma) + ggtitle("limma")
limma_batch ::grid.arrange(grobs=list(SE_batch,Combat_batch,
gridExtra CombatSQ_batch,limma_batch))