8  Disease enrichment analysis

We developed DOSE (Yu et al. 2015) package to promote the investigation of diseases. DOSE provides five methods for measuring semantic similarities among DO terms and gene products, hypergeometric model and gene set enrichment analysis (GSEA) for associating disease with gene list and extracting disease association insight from genome wide expression profiles.

8.1 Disease over-representation analysis

DOSE supports enrichment analysis of Disease Ontology (DO) (Schriml et al. 2011), Network of Cancer Gene (A. et al. 2016) and Disease Gene Network (DisGeNET) (Janet et al. 2015). In addition, several visualization methods were provided by enrichplot to help interpreting semantic and enrichment results.

8.1.1 Over-representation analysis for disease ontology

In the following example, we selected fold change above 1.5 as the differential genes and analyzing their disease association.

library(DOSE)
data(geneList)
gene <- names(geneList)[abs(geneList) > 1.5]
head(gene)
[1] "4312"  "8318"  "10874" "55143" "55388" "991"  
x <- enrichDO(gene          = gene,
              ont           = "HDO",
              pvalueCutoff  = 0.05,
              pAdjustMethod = "BH",
              universe      = names(geneList),
              minGSSize     = 5,
              maxGSSize     = 500,
              qvalueCutoff  = 0.05,
              readable      = FALSE)
head(x)
                       ID           Description GeneRatio  BgRatio RichFactor
DOID:0060306 DOID:0060306 Meier-Gorlin syndrome     6/273  10/6078  0.6000000
DOID:10534     DOID:10534        stomach cancer    25/273 205/6078  0.1219512
DOID:5041       DOID:5041     esophageal cancer    18/273 132/6078  0.1363636
DOID:820         DOID:820           myocarditis     8/273  31/6078  0.2580645
DOID:1107       DOID:1107  esophageal carcinoma    16/273 117/6078  0.1367521
DOID:1612       DOID:1612         breast cancer    35/273 398/6078  0.0879397
             FoldEnrichment   zScore       pvalue    p.adjust      qvalue
DOID:0060306      13.358242 8.481228 1.402836e-06 0.001273775 0.001058772
DOID:10534         2.715090 5.416997 4.109986e-06 0.001865933 0.001550979
DOID:5041          3.035964 5.128253 2.117499e-05 0.006408964 0.005327182
DOID:820           5.745480 5.744019 4.782074e-05 0.009274126 0.007708728
DOID:1107          3.044614 4.842498 5.908904e-05 0.009274126 0.007708728
DOID:1612          1.957866 4.286443 8.098096e-05 0.009274126 0.007708728
                                                                                                                                                                                 geneID
DOID:0060306                                                                                                                                             8318/81620/4174/990/23594/4998
DOID:10534                                             4312/2305/10403/259266/8140/81930/332/2146/8061/4318/3576/8792/6352/4288/3131/2952/347902/3572/563/7031/6926/3117/2018/2066/3169
DOID:5041                                                                                      4312/3868/8140/7850/2146/4321/2921/4318/3576/6890/2952/563/7373/771/2018/2066/3169/11122
DOID:820                                                                                                                                       6280/6279/3627/29851/8792/1493/2697/4982
DOID:1107                                                                                                4312/3868/8140/2146/4321/4318/3576/6890/2952/563/7373/771/2018/2066/3169/11122
DOID:1612    4312/6241/983/2146/3887/6790/891/23532/3161/993/5347/55215/55723/875/8438/9700/5888/7083/898/1493/6352/4288/3551/185/2952/367/1634/4582/3479/9370/3117/652/4137/3169/10551
             Count
DOID:0060306     6
DOID:10534      25
DOID:5041       18
DOID:820         8
DOID:1107       16
DOID:1612       35

The enrichDO() function requires an entrezgene ID vector as input, mostly is the differential gene list of gene expression profile studies. Please refer to session 16.1 if you need to conver other gene ID types to entrezgene ID.

The ont parameter can be “HDO” (Human Disease Ontology), “HPO” (Human Phenotype Ontology) or “MPO” (Mouse Phenotype Ontology). pvalueCutoff setting the cutoff value of p value and adjusted p value; pAdjustMethod setting the p value correction methods, include the Bonferroni correction (“bonferroni”), Holm (“holm”), Hochberg (“hochberg”), Hommel (“hommel”), Benjamini & Hochberg (“BH”) and Benjamini & Yekutieli (“BY”) while qvalueCutoff is used to control q-values.

The universe setting the background gene universe for testing. If user do not explicitly setting this parameter, enrichDO() will set the universe to all human genes that have DO annotation.

The minGSSize (and maxGSSize) indicates that only those DO terms that have more than minGSSize (and less than maxGSSize) genes annotated will be tested.

The readable is a logical parameter, indicates whether the entrezgene IDs will mapping to gene symbols or not (see also setReadable).

8.1.2 Over-representation analysis for the network of cancer gene

Network of Cancer Gene (NCG) (A. et al. 2016) is a manually curated repository of cancer genes. NCG release 5.0 (Aug. 2015) collects 1,571 cancer genes from 175 published studies. DOSE supports analyzing gene list and determine whether they are enriched in genes known to be mutated in a given cancer type.

gene2 <- names(geneList)[abs(geneList) < 3]
ncg <- enrichNCG(gene2) 
head(ncg)
                                                                     ID
pan-cancer_paediatric                             pan-cancer_paediatric
triple_negative_breast_cancer             triple_negative_breast_cancer
bladder_cancer                                           bladder_cancer
pancreatic_cancer_(all_histologies) pancreatic_cancer_(all_histologies)
soft_tissue_sarcoma                                 soft_tissue_sarcoma
paediatric_high-grade_glioma               paediatric_high-grade_glioma
                                                            Description
pan-cancer_paediatric                             pan-cancer_paediatric
triple_negative_breast_cancer             triple_negative_breast_cancer
bladder_cancer                                           bladder_cancer
pancreatic_cancer_(all_histologies) pancreatic_cancer_(all_histologies)
soft_tissue_sarcoma                                 soft_tissue_sarcoma
paediatric_high-grade_glioma               paediatric_high-grade_glioma
                                    GeneRatio  BgRatio RichFactor
pan-cancer_paediatric                162/2281 183/3177  0.8852459
triple_negative_breast_cancer         71/2281  75/3177  0.9466667
bladder_cancer                        97/2281 112/3177  0.8660714
pancreatic_cancer_(all_histologies)   40/2281  42/3177  0.9523810
soft_tissue_sarcoma                   26/2281  26/3177  1.0000000
paediatric_high-grade_glioma          25/2281  25/3177  1.0000000
                                    FoldEnrichment   zScore       pvalue
pan-cancer_paediatric                     1.232979 5.179242 1.833773e-08
triple_negative_breast_cancer             1.318527 4.453534 4.290660e-07
bladder_cancer                            1.206273 3.545563 1.253690e-04
pancreatic_cancer_(all_histologies)       1.326486 3.397967 1.262162e-04
soft_tissue_sarcoma                       1.392810 3.208441 1.742793e-04
paediatric_high-grade_glioma              1.392810 3.145636 2.434966e-04
                                        p.adjust       qvalue
pan-cancer_paediatric               1.613721e-06 7.721152e-07
triple_negative_breast_cancer       1.887890e-05 9.032967e-06
bladder_cancer                      2.776757e-03 1.328592e-03
pancreatic_cancer_(all_histologies) 2.776757e-03 1.328592e-03
soft_tissue_sarcoma                 3.067315e-03 1.467615e-03
paediatric_high-grade_glioma        3.073768e-03 1.470702e-03
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                geneID
pan-cancer_paediatric               2146/55353/4609/1029/3575/22806/3418/3066/2120/30012/867/7468/7545/3195/865/64109/4613/613/11177/7490/238/10736/10054/5771/4893/140885/1785/9760/3417/6597/6476/9126/4869/10320/7307/80204/1050/10992/8028/2312/6608/896/894/2196/4849/7023/5093/5079/5293/5727/55181/171017/51322/5781/3718/55294/60/673/8085/5897/4851/1665/51176/1108/7764/10664/6098/2332/2201/6495/3845/7015/1441/2782/64919/4298/23512/8239/29102/6929/8021/6134/6598/4209/5290/22941/8726/207/3717/2033/10716/4928/6932/694/5156/10019/6886/9968/7080/2623/7874/1654/4149/3020/23219/55252/55729/10735/5728/4853/23451/51341/387/3206/6146/79718/2624/63035/3815/171023/23269/25/23592/5896/7403/2260/54880/3716/9203/57178/6777/5789/4297/29072/90/546/120/25836/8289/4345/9611/5925/4763/1997/1499/7157/3399/5295/1387/4602/51564/1027/4005/2322/2078/678/6403/55709/1277/7494/64061/2625
triple_negative_breast_cancer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       6790/898/4609/1029/1789/4436/2120/867/7128/1788/1030/7490/2271/238/675/2047/4914/1316/5291/5293/5781/55294/8085/4851/4170/3845/355/1616/4854/5290/207/2033/4233/29110/2903/5979/5728/4853/2624/3815/10000/7403/2260/55193/472/5789/4297/2065/4286/8626/8405/8289/10499/55164/5925/4763/23405/1499/4921/7157/5295/1387/2078/324/7248/7048/22894/3480/2045/2066/2625
bladder_cancer                                                                                                                                                                                                                                                                                                                                                            9700/57211/2175/9603/1029/11168/2072/8997/79949/54663/688/6882/4893/8454/6693/56288/2195/10992/1026/64783/896/677/26038/6256/55294/60/8085/4851/841/3265/7175/1999/730051/3845/23484/7015/8243/10605/8295/4854/5290/51043/2033/4780/23224/23217/2064/23385/55252/10735/8241/10672/5728/4853/23451/374291/387/7799/171023/288/30849/4152/9794/7403/287/57634/463/472/4297/2065/2262/3280/23232/8289/9611/5925/2068/56339/4763/7157/2186/1387/3910/7536/2261/7248/23037/6709/54961/23345/57125/7832/79633/10628/22906/388/3169
pancreatic_cancer_(all_histologies)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      1029/4771/8997/7159/2011/6597/7307/10992/3710/6710/55294/7091/3845/23654/7046/3096/4089/91/8241/54549/92/23451/63035/7403/55193/23309/472/800/29072/23077/23499/8289/54894/6416/7157/4088/182/7048/2199/26960
soft_tissue_sarcoma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   999/6850/4914/4342/2185/55294/2041/4851/2044/4058/5290/4486/5297/5728/3815/2324/7403/546/5925/4763/1499/7157/5159/2045/3667/2066
paediatric_high-grade_glioma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   4609/1029/1019/4613/1030/1956/4914/896/894/673/8493/5290/4233/5156/1021/63035/54880/4916/90/546/4763/7157/5295/595/4915
                                    Count
pan-cancer_paediatric                 162
triple_negative_breast_cancer          71
bladder_cancer                         97
pancreatic_cancer_(all_histologies)    40
soft_tissue_sarcoma                    26
paediatric_high-grade_glioma           25

8.1.3 Over-representation analysis for the disease gene network

DisGeNET(Janet et al. 2015) is an integrative and comprehensive resources of gene-disease associations from several public data sources and the literature. It contains gene-disease associations and snp-gene-disease associations.

The enrichment analysis of disease-gene associations is supported by the enrichDGN function and analysis of snp-gene-disease associations is supported by the enrichDGNv function.

dgn <- enrichDGN(gene) 
head(dgn)
               ID                              Description GeneRatio   BgRatio
C0010278 C0010278                         Craniosynostosis    43/497 488/21671
C0853879 C0853879             Invasive carcinoma of breast    42/497 473/21671
C4733092 C4733092 estrogen receptor-negative breast cancer    34/497 356/21671
C3642347 C3642347              Basal-Like Breast Carcinoma    28/497 245/21671
C3642345 C3642345               Luminal A Breast Carcinoma    22/497 153/21671
C0036202 C0036202                              Sarcoidosis    36/497 413/21671
         RichFactor FoldEnrichment    zScore       pvalue     p.adjust
C0010278 0.08811475       3.842122  9.728932 4.609534e-14 2.267976e-10
C0853879 0.08879493       3.871780  9.674768 7.105190e-14 2.267976e-10
C4733092 0.09550562       4.164391  9.223137 2.446675e-12 4.864593e-09
C3642347 0.11428571       4.983271  9.606353 3.047991e-12 4.864593e-09
C3642345 0.14379085       6.269802 10.021789 7.034749e-12 8.438458e-09
C0036202 0.08716707       3.800800  8.804448 7.930882e-12 8.438458e-09
               qvalue
C0010278 1.636811e-10
C0853879 1.636811e-10
C4733092 3.510804e-09
C3642347 3.510804e-09
C3642345 6.090082e-09
C0036202 6.090082e-09
                                                                                                                                                                                                                          geneID
C0010278 4312/8318/6280/1062/6279/6278/3627/820/27299/6362/81620/2146/3002/29968/990/4318/4069/3576/6890/23594/26279/1493/6352/4998/2152/2697/185/4330/5327/4982/1300/3667/2200/9607/3572/563/7031/3479/6424/1846/3117/1308/2625
C0853879        4312/7153/6278/9787/9582/51203/890/983/5080/2146/1111/9232/10855/4171/6664/4102/2173/4318/701/3576/1978/8836/53335/1894/7980/8792/8842/2151/185/2952/367/4982/4582/6926/3479/1602/23158/2066/3169/5304/2625/5241
C4733092                                         2305/6278/79733/6241/81930/81620/2146/3620/29968/11004/8061/3576/1894/2491/7083/8792/214/5327/367/4982/3667/4582/27324/3479/1846/80129/4137/8839/3169/1408/5304/2625/5241/10551
C3642347                                                                          2305/1062/4605/9833/7368/11065/10232/55765/5163/2146/2568/3620/6790/6664/29127/2173/4318/3576/3159/8792/6663/27324/3479/1846/18/3169/2625/5241
C3642345                                                                                                         2305/9833/7153/55355/1111/3161/4318/3576/2001/6663/4288/2152/185/4128/4582/27324/80129/3169/5304/8614/2625/5241
C0036202                               4312/6280/6279/10403/3627/6373/4283/27299/6362/3002/4321/6355/6364/29851/4318/5004/4069/3576/26227/6890/6352/4485/23541/185/7043/6863/2952/4982/25802/4582/2053/3479/3117/2167/80736/1524
         Count
C0010278    43
C0853879    42
C4733092    34
C3642347    28
C3642345    22
C0036202    36
snp <- c("rs1401296", "rs9315050", "rs5498", "rs1524668", "rs147377392",
         "rs841", "rs909253", "rs7193343", "rs3918232", "rs3760396",
         "rs2231137", "rs10947803", "rs17222919", "rs386602276", "rs11053646",
         "rs1805192", "rs139564723", "rs2230806", "rs20417", "rs966221")
dgnv <- enrichDGNv(snp)
head(dgnv)
               ID               Description GeneRatio    BgRatio RichFactor
C0010054 C0010054 Coronary Arteriosclerosis      6/17 440/194515 0.01363636
C0151744 C0151744       Myocardial Ischemia      4/17 103/194515 0.03883495
C0031099 C0031099             Periodontitis      4/17 116/194515 0.03448276
C0007785 C0007785       Cerebral Infarction      4/17 123/194515 0.03252033
C0003850 C0003850          Arteriosclerosis      4/17 267/194515 0.01498127
C0004153 C0004153           Atherosclerosis      4/17 281/194515 0.01423488
         FoldEnrichment   zScore       pvalue     p.adjust qvalue
C0010054       156.0281 30.43647 1.568917e-12 2.761295e-10     NA
C0151744       444.3518 42.07730 1.754840e-10 1.544259e-08     NA
C0031099       394.5538 39.63952 2.839985e-10 1.583793e-08     NA
C0007785       372.0995 38.48983 3.599531e-10 1.583793e-08     NA
C0003850       171.4166 26.05143 8.145389e-09 2.867177e-07     NA
C0004153       162.8763 25.38727 9.996713e-09 2.932369e-07     NA
                                                            geneID Count
C0010054 rs5498/rs147377392/rs11053646/rs1805192/rs2230806/rs20417     6
C0151744                   rs5498/rs147377392/rs11053646/rs1805192     4
C0031099                         rs5498/rs909253/rs1805192/rs20417     4
C0007785                rs147377392/rs11053646/rs1805192/rs2230806     4
C0003850                        rs5498/rs1805192/rs2230806/rs20417     4
C0004153                        rs5498/rs1805192/rs2230806/rs20417     4

8.2 Disease gene set enrichment analysis

8.2.1 gseDO fuction

In the following example, in order to speedup the compilation of this document, only gene sets with size above 120 were tested and only 100 permutations were performed.

library(DOSE)
data(geneList)
y <- gseDO(geneList,
           minGSSize     = 120,
           pvalueCutoff  = 0.2,
           pAdjustMethod = "BH",
           verbose       = FALSE)
head(y, 3)
                       ID                      Description setSize
DOID:612         DOID:612 primary immunodeficiency disease     194
DOID:0050117 DOID:0050117      disease by infectious agent     466
DOID:934         DOID:934         viral infectious disease     297
             enrichmentScore      NES       pvalue     p.adjust       qvalue
DOID:612           0.4861389 2.195667 1.441403e-10 2.219760e-08 1.441403e-08
DOID:0050117       0.3382869 1.654190 1.060502e-07 8.165866e-06 5.302511e-06
DOID:934           0.3461519 1.635336 1.832569e-05 9.407189e-04 6.108564e-04
             rank                   leading_edge
DOID:612     2521 tags=45%, list=20%, signal=36%
DOID:0050117 2199 tags=31%, list=18%, signal=27%
DOID:934     2197 tags=32%, list=18%, signal=27%
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      core_enrichment
DOID:612                                                                                                                                                                                                                                                                                                     55388/7153/9837/29851/6890/9636/1503/1493/7037/4173/3932/3559/6772/51311/3507/3561/917/3574/3575/919/4860/915/22806/4938/1535/3458/959/5336/11151/3702/925/4688/64135/28755/50615/974/1794/3689/5788/916/4068/3937/30009/3394/10525/100/7374/3659/939/4689/5880/7128/6891/6789/930/6573/11322/204/6850/10095/7852/8772/64170/3119/28985/1053/5971/1536/10125/8456/8625/3071/7293/4478/1380/958/5591/9437/10379/54440/3570/3978/3593/10625/29927/3558/735
DOID:0050117 4312/6279/8685/3627/4283/6362/3002/3620/6355/2921/6364/4318/3576/6890/875/1493/6352/4288/3934/59272/4599/54210/3932/80380/713/5551/133/3559/768/1230/6772/51311/6347/6402/5320/64581/4609/81611/3561/91543/6351/6590/9332/1029/1051/3574/6354/3806/7412/1535/3458/81873/959/4783/2950/3162/925/1594/50615/942/2529/51224/1991/1557/10576/9235/25939/6361/3689/1234/916/467/7096/259197/3383/6367/30009/2539/5806/6374/100/2525/1088/3600/3659/2919/6696/3549/940/58528/10541/6646/6285/6891/6396/671/7422/6059/6573/929/142/26191/4282/468/1312/7124/29949/912/1030/5329/3569/4049/7097/10096/56244/50506/2048/345/1378/5133/5743/348/4151/3119/3053/1956/2213/5971/3135/6376/9021/3596/2833/1080/356/1380/286/7133/887/958/4504/728/9402/5610/5054/4880
DOID:934                                                                                                                                                                                                                                                                      4312/6279/3627/4283/3002/3620/6355/2921/6364/3576/1493/6352/4288/3934/59272/4599/54210/3932/713/5551/3559/768/1230/6772/51311/6347/5320/4609/3561/91543/6351/6590/9332/1029/1051/3574/6354/3806/3458/959/4783/925/1594/50615/1991/9235/25939/6361/3689/1234/916/259197/3383/5806/6374/1088/3600/3659/2919/940/6285/6891/671/7422/6059/929/142/4282/468/7124/912/1030/5329/3569/7097/2048/345/5133/5743/348/4151/3119/1956/3135/6376/9021/3596/356/1380/7133/958/4504/728/9402/5610/5054

8.2.2 gseNCG fuction

ncg <- gseNCG(geneList,
              pvalueCutoff  = 0.5,
              pAdjustMethod = "BH",
              verbose       = FALSE)
ncg <- setReadable(ncg, 'org.Hs.eg.db')
head(ncg, 3) 
                                                           ID
pan-gynecological and breast     pan-gynecological and breast
pan-gastric                                       pan-gastric
breast_fibroepithelial_tumours breast_fibroepithelial_tumours
                                                  Description setSize
pan-gynecological and breast     pan-gynecological and breast      43
pan-gastric                                       pan-gastric      49
breast_fibroepithelial_tumours breast_fibroepithelial_tumours      17
                               enrichmentScore       NES      pvalue  p.adjust
pan-gynecological and breast        -0.5263429 -1.728298 0.003304610 0.1243685
pan-gastric                         -0.4993803 -1.697203 0.004015524 0.1243685
breast_fibroepithelial_tumours      -0.6421576 -1.692469 0.006141654 0.1243685
                                  qvalue rank                   leading_edge
pan-gynecological and breast   0.1115195 2464 tags=44%, list=20%, signal=36%
pan-gastric                    0.1115195 3280 tags=49%, list=26%, signal=36%
breast_fibroepithelial_tumours 0.1115195 2700 tags=59%, list=22%, signal=46%
                                                                                                                                                              core_enrichment
pan-gynecological and breast                                 ATM/ZC3H13/NIPBL/SPOP/ARID1A/RASA1/RB1/RNF43/MAP2K4/NF1/CTNNB1/TP53/PIK3R1/CDKN1B/CCND1/ARID5B/MAP3K1/TBX3/GATA3
pan-gastric                    BCOR/SOX9/TCF7L2/ATM/CALD1/SEMG2/HTR7/ARID1A/RASA1/RB1/TTBK2/RNF43/CTNNB1/TP53/BCL9/SMAD3/APC/ZFP36L2/TGFBR2/MUC6/MAP3K1/CACNA1C/ATP8B1/CYP4B1
breast_fibroepithelial_tumours                                                                                          BCOR/SETD2/RB1/PCNX4/NF1/TP53/RARA/SYNE1/MAP3K1/ERBB4

8.2.3 gseDGN fuction

dgn <- gseDGN(geneList,
              pvalueCutoff  = 0.2,
              pAdjustMethod = "BH",
              verbose       = FALSE)
dgn <- setReadable(dgn, 'org.Hs.eg.db')
head(dgn, 3) 
               ID                  Description setSize enrichmentScore
C0024266 C0024266 Lymphocytic Choriomeningitis     120       0.5712593
C4721414 C4721414         Mantle cell lymphoma     368       0.4107437
C0205682 C0205682              Waist-Hip Ratio     401      -0.4425633
               NES pvalue    p.adjust       qvalue rank
C0024266  2.405091  1e-10 2.05275e-07 1.754737e-07 2579
C4721414  1.980385  1e-10 2.05275e-07 1.754737e-07 1745
C0205682 -1.953671  1e-10 2.05275e-07 1.754737e-07 2011
                           leading_edge
C0024266 tags=48%, list=21%, signal=38%
C4721414 tags=26%, list=14%, signal=23%
C0205682 tags=28%, list=16%, signal=24%
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                core_enrichment
C0024266                                                                                                                                                                                                                                                                                                                                                                                S100A9/CXCL10/CXCL9/EZH2/GZMB/ICOS/USP18/CXCL8/CTLA4/TREM1/PRF1/ADM/CA9/STAT1/CCL2/SELL/CDKN2A/IL7/IL7R/IFNG/CCR5/IL27RA/SH2D1A/FCER1G/CDK2AP2/CPVL/CD27/PSMB10/PTPN22/SLAMF1/KDM1A/TNF/IL6/FGL2/TLR2/RPAIN/NELFCD/PDCD1/WAS/HIF1A/ATP5F1B/FCGR2B/EGR2/STX11/CXCR3/TYROBP/YME1L1/SOSTDC1/PTPN2/TRAF1/HNF1A/IRF9/PML/NR0B2/IL2/TOX/AGFG1
C4721414                                                                                                                                                                     CDC20/MELK/E2F8/APOBEC3B/PBK/TPX2/RAD51AP1/DUSP2/CDT1/EZH2/AURKB/CHEK1/AURKA/CCNB1/PSAT1/SOX11/PRAME/CDC6/PLK1/MMP9/EIF4EBP1/SPIB/RAD51/CD38/MMP7/MCM6/CTSC/LCK/MNX1/SKP2/STAT1/PRDM1/MS4A4A/IGK/MYC/PCNA/IFI27/PSMG1/CCR7/GMNN/E2F1/CDKN2A/PSMB9/NME1/LTB/IGHD/CD40LG/LAIR1/IGF2BP3/LBR/COL11A2/MSH2/CD79B/APRT/NSD2/CDK4/PTPRC/PLSCR1/CCR5/G6PD/CHEK2/HILPDA/DCK/PIM2/WNT3/CD6/CD28/MTAP/PRDX1/MRC1/TUBB3/VEGFA/CD19/HACD1/SOX4/PMCH/ST14/PARP1/TCL1A/DNMT1/IGLL5/SYK/TNF/MYCN/CD1D/NXT1/CDKN2B/RANGAP1/IL6/LTA/PSMD2/CXCR4/BCR/FCER2/FADD/PTGS2
C0205682 RETREG3/JMJD1C/SH2B1/BDNF/ARHGEF26/PDE5A/BPTF/SMAD3/TTC39A/ATP2B1/ARID4A/HOXC4/NID1/LAMA4/LRRC36/NUDT18/ANKRD28/HECTD4/COL11A1/MEIS1/INSR/CUL9/NRIP3/BCL2/CD34/EZH1/DYM/NDST1/COL15A1/VGLL3/CCND1/ZCCHC10/HOXC6/RAB26/QTRT1/MEIS2/ARID5B/AHNAK/FGF1/CAPRIN2/LAMB1/CPEB3/ELOVL4/CDADC1/PDE8B/ZNF268/NRP1/SYTL2/NR5A2/DGLUCY/SEMA3B/NID2/SIK3/PRR5L/FGF2/COL8A1/RAPGEF3/RBM6/CDH13/JCAD/NAV3/TRIM8/PPIEL/PTPRG/NBL1/CALCRL/PPL/LPL/BCKDHB/MAPKBP1/CNTLN/BBS4/P4HTM/FTO/PDZRN4/PDGFC/SGCD/NRXN3/AFF3/IGF1R/ABCC8/MPPED2/COL5A1/COL6A2/LOXL1/CYP21A2/LTBP2/TTC28/PATJ/PCSK5/WNT4/TTC12/NISCH/ASTN2/TCEA2/MN1/SETBP1/TAOK1/MAST4/ITGA7/ITGBL1/COL14A1/C1QTNF3/ZNF423/IQCH/MYH11/ADH1B/ABLIM3/MAPT/STC2/TFAP2B/CYBRD1/SCUBE2

References

A., Omer, Giovanni M. D., Thanos P. M., and Francesca D. C. 2016. “NCG 5.0: Updates of a Manually Curated Repository of Cancer Genes and Associated Properties from Cancer Mutational Screenings.” Nucleic Acids Research 44 (D1): D992–99. https://doi.org/10.1093/nar/gkv1123.
Janet, P., Núria Q. R., Àlex B., Jordi D. P., Anna B. M., Martin B., Ferran S., and Laura I. F. 2015. “DisGeNET: A Discovery Platform for the Dynamical Exploration of Human Diseases and Their Genes.” Database 2015 (March): bav028. https://doi.org/10.1093/database/bav028.
Schriml, L. M., C. Arze, S. Nadendla, Y.-W. W. Chang, M. Mazaitis, V. Felix, G. Feng, and W. A. Kibbe. 2011. “Disease Ontology: A Backbone for Disease Semantic Integration.” Nucleic Acids Research 40 (D1): D940–46. https://doi.org/10.1093/nar/gkr972.
Yu, Guangchuang, Li-Gen Wang, Guang-Rong Yan, and Qing-Yu He. 2015. DOSE: An r/Bioconductor Package for Disease Ontology Semantic and Enrichment Analysis.” Bioinformatics 31 (4): 608–9. https://doi.org/10.1093/bioinformatics/btu684.